Erstellung von Lastprognosen für den elektrischen Strombedarf von Einfamilienhäusern

Projektarbeit

im Studiengang
Regenerative Energien

vorgelegt von

Felix Schnorr und Heinrich Hinze

Juli 2014
an der Hochschule für Technik und Wirtschaft Berlin

Prüfer: Prof. Dr. Volker Quaschning
Prüfer: M. Sc. Tjarko Tjaden
Kurzfassung

Schlagwörter: Lastprognose; Lastprofile; Algorithmen; Fehlermaße
Inhaltsverzeichnis

Kurzfassung .. 2

Inhaltsverzeichnis ... 3

Abbildungsverzeichnis .. 5

Tabellenverzeichnis .. 6

Abkürzungsverzeichnis ... 7

Symbolverzeichnis .. 8

1 Vorwort .. 9

2 Elektrische Last ... 10
2.1 Zusammensetzung der elektrischen Last 10
2.2 Einflüsse auf die Last ... 11

3 Komplexe Algorithmen zur Lastprognose ... 14
3.1 Standardlastprofile .. 14
3.2 Regressionsverfahren .. 15
3.3 Neuronale Netze .. 16
3.4 Evolutionäre Algorithmen .. 17
3.5 Fuzzy-Logik .. 18
3.6 Weitere Modelle und abschließende Betrachtung 19

4 Datengrundlage .. 21
4.1 Selektion der Daten ... 21
4.2 Merkmale des Datensatzes .. 21
4.3 Relevanz der Daten ... 22

5 Maß für die Qualität von Prognosen .. 24
5.1 Nomenklatur .. 24
5.2 Einfacher Fehler .. 25
5.3 Mittlerer Fehler ... 25
5.4 Quadratischer Fehler .. 26
5.5 Relativer Fehler .. 26
5.6 Weitere Beurteilungsgrößen ... 27

6 Einfache Algorithmen zur Lastprognose ... 28
6.1 Naive Prognose ... 28
6.2 Nächster-Tag-Prognose (V1) ... 28
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Kapitel/Capítulo</th>
<th>Unterkapitel/Capítulo</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>6.3</td>
<td>Nächster-gleicher-Wochentag-Prognose (V2)</td>
<td>29</td>
</tr>
<tr>
<td>6.4</td>
<td>6.4</td>
<td>Erweiterte Varianten (V3)</td>
<td>30</td>
</tr>
<tr>
<td>6.4.1</td>
<td>6.4.1</td>
<td>Gemittelte gleiche Wochentage für die Prognose (V3a)</td>
<td>30</td>
</tr>
<tr>
<td>6.4.2</td>
<td>6.4.2</td>
<td>Gemittelte und gewichtete gleiche Wochentage für Prognose (V3b)</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Untersuchung und Vergleich der Varianten</td>
<td>33</td>
</tr>
<tr>
<td>7.1</td>
<td>7.1</td>
<td>Betrachtung V1</td>
<td>33</td>
</tr>
<tr>
<td>7.2</td>
<td>7.2</td>
<td>Betrachtung V2</td>
<td>34</td>
</tr>
<tr>
<td>7.3</td>
<td>7.3</td>
<td>Betrachtung V3</td>
<td>35</td>
</tr>
<tr>
<td>7.3.1</td>
<td>7.3.1</td>
<td>V3a</td>
<td>35</td>
</tr>
<tr>
<td>7.3.2</td>
<td>7.3.2</td>
<td>V3b</td>
<td>37</td>
</tr>
<tr>
<td>7.4</td>
<td>7.4</td>
<td>Standardlastprofil</td>
<td>38</td>
</tr>
<tr>
<td>7.5</td>
<td>7.5</td>
<td>Einfluss der Varianten auf Autarkie und Eigenverbrauch</td>
<td>39</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Zusammenfassung und Ausblick</td>
<td>40</td>
</tr>
<tr>
<td>8.1</td>
<td>8.1</td>
<td>Übersicht über alle Profile</td>
<td>40</td>
</tr>
<tr>
<td>8.2</td>
<td>8.2</td>
<td>Übersicht anhand einzelner Profile</td>
<td>40</td>
</tr>
<tr>
<td>8.3</td>
<td>8.3</td>
<td>Ausblick</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Anhang A</td>
<td>Weitere Diagramme zur Analyse der Varianten</td>
<td>43</td>
</tr>
<tr>
<td>A.1</td>
<td>A.1</td>
<td>Prognose durch V3b über 3 Wochen mit Gewichtung</td>
<td>43</td>
</tr>
<tr>
<td>A.2</td>
<td>A.2</td>
<td>Prognose durch V3b über 5 Wochen mit Gewichtung</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Literaturverzeichnis</td>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abbildung 1: Mögliche Einflüsse auf ein Lastprofil ... 11
Abbildung 2: Tagesmittelwerte verschiedener Wochentage eines Haushaltes 12
Abbildung 3: Tagesmittelwerte verschiedener Haushalte eines im Vergleich zum vorangegangenen Verhalten atypischen Haushalts ... 13
Abbildung 4: Vergleich eines Standardlastprofils eines Berliner Haushaltes mit einem mittleren Tagesprofil eines gemessenen Haushalts ... 15
Abbildung 5: Schematischer Ablauf eines evolutionären Algorithmus (nach [Wei07]). ... 17
Abbildung 6: Darstellung des Algorithmus der Fuzzy-Logik [OtJa09]. 19
Abbildung 7: Jahresstromverbrauch der einzelnen Haushalte in MWh und der sich daraus ergebende Mittelwert sowie das Minimum und Maximum ... 21
Abbildung 8: Die minimale und maximale Leistung jedes Profils und der daraus resultierende Mittelwert ... 22
Abbildung 9: Täglicher Strombedarf der einzelnen Haushalte über ein Jahr 22
Abbildung 10: Standardlastprofil und aus dem Datensatz resultierender Lastgang durch die Mittelung aller Tage und Profile im Vergleich .. 23
Abbildung 11: Schematische Darstellung der Nächster-Tag-Prognose 29
Abbildung 12: Schematische Darstellung Prognose basierend auf dem gleichen Wochentag .. 30
Abbildung 13: Schematische Darstellung des Algorithmus der Prognose basierend auf den gewichteten, gleichen vorangegangenen Wochentagen .. 31
Abbildung 14: Prozentualer einfacher Fehler ermittelt über die Tagesenergie resultierend aus V1 .. 33
Abbildung 15: Gemittelte absolute Abweichung der Tagesenergien jedes Profils ermittelt durch V1 ... 34
Abbildung 16: Prozentualer einfacher Fehler ermittelt über die Tagesenergie resultierend aus V2 .. 34
Abbildung 17: Gemittelte absolute Abweichung der Tagesenergien jedes Profils ermittelt durch V2 .. 35
Abbildung 18: Links der PE der Tagesenergie über 3 Wochen und rechts über 12 Wochen ermittelt durch V3a ... 36
Abbildung 19: Links die mittleren Abweichungen von V3a_3W und rechts von V3a_12W für jedes Profil ... 37
Abbildung 20: Links die mittleren Abweichungen von V3a_5W und rechts von V3b_50/20/10/10/10 für jedes Profil .. 38
Abbildung 21: Prozentualer einfacher Fehler ermittelt über die Tagesenergie resultierend dem Standardlastprofil 2010 für Berlin ... 38
Abbildung 22: Mittlere Abweichung aller Varianten in Abhängigkeit zur Fehlerart. 40
Abbildung 23: Mittlere Abweichungen in Abhängigkeit zum Profil und zu der Variante. .. 41
Abbildung 24: Einfacher Fehler bei der Prognose der Last durch V3b_60/20/20 für alle Profile ... 43
Abbildung 25: Abweichung der Tagesenergie bei jedem Profil vorhergesagt durch V3b über 3 Wochen mit einer Gewichtung von 60 % der ersten Woche und jeweils 20 % der beiden anderen Wochen ... 43
Abbildung 26: Einfacher Fehler bei der Prognose der Last durch V3b_50/20/10/10/10 für alle Profile .. 44
Tabellenverzeichnis

Tabelle 2: Nomenklatur für Fehler aufgrund der verwendeten Rechenoperation. 25
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR-Modelle</td>
<td>Autoregressive Modelle</td>
</tr>
<tr>
<td>d. h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>EA</td>
<td>Evolutionäre Algorithmen</td>
</tr>
<tr>
<td>el.</td>
<td>elektrisch</td>
</tr>
<tr>
<td>EP</td>
<td>evolutionäre Programmierung</td>
</tr>
<tr>
<td>EVU</td>
<td>Energieversorgungsunternehmen</td>
</tr>
<tr>
<td>Hrsg.</td>
<td>Herausgeber</td>
</tr>
<tr>
<td>HTW Berlin</td>
<td>Hochschule für Technik und Wirtschaft Berlin</td>
</tr>
<tr>
<td>KNN</td>
<td>Künstliches neuronales Netz</td>
</tr>
<tr>
<td>KW</td>
<td>Kalenderwoche</td>
</tr>
<tr>
<td>MiWe</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>NN</td>
<td>Neuronales Netz</td>
</tr>
<tr>
<td>Nr. (#)</td>
<td>Nummer</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaik</td>
</tr>
<tr>
<td>s.</td>
<td>siehe</td>
</tr>
<tr>
<td>u. a.</td>
<td>unter anderem</td>
</tr>
<tr>
<td>VDEW</td>
<td>Verband der Elektrizitätswirtschaft e. V.</td>
</tr>
<tr>
<td>Verbr.</td>
<td>Verbrauch</td>
</tr>
<tr>
<td>vgl.</td>
<td>vergleiche</td>
</tr>
<tr>
<td>z. B.</td>
<td>zum Beispiel</td>
</tr>
<tr>
<td>z. T.</td>
<td>zum Teil</td>
</tr>
</tbody>
</table>
Symbolverzeichnis

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bedeutung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_i</td>
<td>einfacher Fehler</td>
<td>$[E_i] = W$</td>
</tr>
<tr>
<td>x_t</td>
<td>prognostizierter Wert</td>
<td>$[x_t] = W$</td>
</tr>
<tr>
<td>y_t</td>
<td>gemessener Wert</td>
<td>$[y_t] = W$</td>
</tr>
<tr>
<td>AE</td>
<td>absoluter Fehler</td>
<td>$[AE] = W$</td>
</tr>
<tr>
<td>ME</td>
<td>mittlerer Fehler</td>
<td>$[ME] = W$</td>
</tr>
<tr>
<td>MAE</td>
<td>mittlerer absoluter Fehler</td>
<td>$[MAE] = W$</td>
</tr>
<tr>
<td>$RMSE$</td>
<td>Wurzel aus mittlerem quadrierten Fehler</td>
<td>$[RMSE] = W$</td>
</tr>
<tr>
<td>MPE</td>
<td>mittlerer prozentualer Fehler</td>
<td>$[MPE] = %$</td>
</tr>
<tr>
<td>$MdAPE$</td>
<td>Median des absoluten prozentualen Fehlers</td>
<td>$[MdAPE] = %$</td>
</tr>
<tr>
<td>$MAPE$</td>
<td>der mittlere absolute prozentuale Fehler</td>
<td>$[MAPE] = %$</td>
</tr>
<tr>
<td>α_n</td>
<td>Regressionskoeffizient</td>
<td>$[\alpha_n] = 1$</td>
</tr>
<tr>
<td>R</td>
<td>Restglied</td>
<td>$[R] = 1$</td>
</tr>
<tr>
<td>y_n</td>
<td>Variable</td>
<td>$[y_n] = 1$</td>
</tr>
<tr>
<td>μ_s</td>
<td>graduelle Zugehörigkeit</td>
<td>$[\mu_s] = 1$</td>
</tr>
<tr>
<td>i</td>
<td>Laufvariable für die Anzahl der Wochen</td>
<td>$[i] = 1$</td>
</tr>
</tbody>
</table>
1 Vorwort

2 Elektrische Last

Die elektrische (el.) Last in Haushalten ist u. a. abhängig von den Verbrauchern, die im jeweiligen Moment zum Einsatz kommen und ihrer Leistungsaufnahme. Anders gesagt, beschreibt die Last die momentane Leistungsanforderung. Daraus ergibt sich das Lastprofil, welches dementsprechend von vielen Faktoren abhängt. Die Einflüsse werden ebenso wie die mögliche Zusammensetzung im Folgenden kurz untersucht.

2.1 Zusammensetzung der elektrischen Last

Die Zusammensetzung und auch mögliche Entwicklungen werden in der Literatur sehr detailliert behandelt (z. B. [Pete13]). Auch sind dort Verweise auf weitere Studien zu finden, die sich ebenfalls diesem Themengebiet widmen.

Tabelle 1: Zusammensetzung des el. Verbrauchs in Abhängigkeit zu der Personenanzahl pro Haushalt und des jeweiligen Nutzungsbereichs [Pete13, S. 18].

<table>
<thead>
<tr>
<th>Bereich</th>
<th>Ø - Anteile</th>
<th>Anteile in den verschiedenen Haushaltsgrößen in %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in %</td>
<td>1-Prs.</td>
</tr>
<tr>
<td>Beleuchtung</td>
<td>11,05</td>
<td>10,07</td>
</tr>
<tr>
<td>Umwälzpumpe</td>
<td>5,57</td>
<td>4,36</td>
</tr>
<tr>
<td>Warmwasser</td>
<td>11,5</td>
<td>14,96</td>
</tr>
<tr>
<td>Büro</td>
<td>12,18</td>
<td>14,61</td>
</tr>
<tr>
<td>TV/Audio</td>
<td>11,14</td>
<td>13,61</td>
</tr>
<tr>
<td>Kühlern</td>
<td>10,34</td>
<td>17,83</td>
</tr>
<tr>
<td>Trocknen</td>
<td>10,07</td>
<td>3,3</td>
</tr>
<tr>
<td>Kochen</td>
<td>8,38</td>
<td>7,6</td>
</tr>
<tr>
<td>Gefrieren</td>
<td>5,42</td>
<td>3,83</td>
</tr>
<tr>
<td>Spülen</td>
<td>5,37</td>
<td>2,33</td>
</tr>
<tr>
<td>Waschen</td>
<td>5,1</td>
<td>3,7</td>
</tr>
<tr>
<td>Diverses</td>
<td>3,9</td>
<td>3,79</td>
</tr>
<tr>
<td>Stromverbr. Ø in kWh/a</td>
<td>2.000</td>
<td>3.100</td>
</tr>
</tbody>
</table>

Die Zusammensetzung der Last kann darüber hinaus auch auf einzelne Geräte und ihre durchschnittliche Leistungsaufnahme zurückgeführt werden. Es ergibt sich für den einzelnen Haushalt jedoch immer die Problematik, dass selbst mit der exakt gleichen Ausstattung an Geräten die Nutzungsdauer, der Zeitpunkt und die Häufigkeit der Verwendung stark variieren, weshalb auch...
der Jahresstromverbrauch von Haushalt zu Haushalt unterschiedlich ist. Ebenfalls ist eine zeit-
unabhängige Betrachtung nicht zielführend, da sich das Nutzerverhalten und auch die Geräte
fortwährend ändern. Zwar lassen sich hier Tendenzen identifizieren, jedoch hat auch die Politik
einen großen Einfluss [GMBR12, S. 14]. Dennoch lassen sich mit einer standardisierten Zusam-
mensetzung der Geräte im Haushalt gute Prognosen für einzelne Haushalte erzielen [PaLu05].
Daraus ergeben sich vor allem im Zusammenhang mit einer intelligenten Vernetzung der Geräte
(Demand Side Management DSM) interessante Erkenntnisse. Eine solche bottom-up-Prognose,
d. h. eine Prognose basierend auf dem Leistungsbedarf der einzelnen elektrischen Verbraucher,
ist jedoch nicht Ziel dieser Arbeit, weshalb im Folgenden die exogenen Einflüsse auf den Last-
gang untersucht werden, um Korrelationen des Profils mit diesen aufzudecken.

2.2 Einflüsse auf die Last

Versucht man den Verbrauch und das daraus resultierende Lastprofil anhand der Geräte zu iden-
tifizieren, wird schnell klar, dass dies immer in Abhängigkeit zu weiteren Einflüssen geschehen
muss. Die Zusammensetzung der Last zu einem bestimmten Zeitpunkt zu wissen, lässt noch
keine Aussage darüber zu, wie sie im nächsten Zeitschritt aufgebaut ist, d. h. dass selbst mit dem
genauen Wissen der Anzahl und des Verbrauchs der einzelnen Geräte keine Prognose möglich
ist.

Um weitere Ansätze zu finden, werden daher die Einflussfaktoren auf den el. Verbrauch unter-
sucht. Aus dem vorangegangenen Kapitel kann hergeleitet werden, dass der betrachtete Zeit-
raum auch Einfluss auf die relevanten Größen hat. Bei dem Vergleich des Jahresstromverbrauchs
spielen hauptsächlich die Leistungsaufnahme der Verbraucher, die Einsatzhäufigkeit und die
Dauer eine Rolle. Betrachtet man den Jahresstromverbrauch aus Sicht der Personenzahl in
einem Haushalt, so kann keine eindeutige Aussage mehr zur Korrelation von Lastgang zur Per-
sonenzahl getroffen werden [Pete13, S. 23].

Wird nun der Zeitraum der Betrachtung verringert bzw. die Auflösung vergrößert, werden die
möglichen Einflüsse zahlreicher und können nur noch teilweise benannt werden.

Abbildung 1: Mögliche Einflüsse auf ein Lastprofil.
Die Korrelationen zwischen den Einflüssen auf ein Lastprofil, davon einige in Abbildung 1 dargestellt, sind bereits bei einer Tagesauflösung enorm und kaum im Gesamten erfassbar. Im vorliegenden Fall soll die Auflösung der Prognose 15 Minuten nicht überschreiten, wodurch die Faktoren und auch die Zusammenhänge unzählig werden. Beispielsweise kann ein Stau dazu führen, dass in dem Haushalt erst später gekocht wird und sich somit die Leistungsaufnahme des Herdes verschiebt bzw. komplett ausbleibt. Dieser sehr hohe stochastische Anteil an der Lastprognose einzelner Haushalte macht die Vorhersage sehr schwierig [Koll12, S. 47]. Er lässt sich nur sehr bedingt in einer Simulation berücksichtigen und soll deshalb im Folgenden nicht weiter betrachtet werden. Markant ist jedoch, dass die Zeit in Kohärenz zu den anderen Faktoren steht, was durch die Pfeile in Abbildung 1 dargestellt ist.

Abbildung 2: Tagesmittelwerte verschiedener Wochentage eines Haushaltes.

Diese Typisierung kann jedoch nicht prinzipiell auf jeden Haushalt angewendet werden, was in Abbildung 3 zu sehen ist. Hier ist der eigentlich Tagesrhythmus durch den Montag und nicht wie
„gewöhnlich“ durch das Wochenende unterbrochen. Dass eine Verallgemeinerung der Kurven schwer ist, zeigt sich auch bei [Bock09, S. 24].

Abbildung 3: Tagesmittelwerte verschiedener Haushalte eines im Vergleich zum vorangegangenen Verhalten atypischen Haushalts.
Komplexe Algorithmen zur Lastprognose

Wie bereits in Kapitel 2.2 geschrieben ist eine Prognose einzelner Lasten für einen Haushalt aufgrund des hohen stochastischen Anteils mit vielen Unwägbarkeiten behaftet und lässt sich somit schwer umsetzen. Dennoch existieren bereits einige Lösungsansätze, um dennoch eine Vorhersagen treffen zu können. Im Folgenden soll ein kurzer Überblick Möglichkeiten aufzeigen, diese Aufgabe zu bewältigen. Es ist jedoch anzumerken, dass die meisten der Untersuchungen keinen einzelnen Haushalt und die daraus resultierenden Problematiken im Hinblick auf die unterschiedlichen Algorithmen untersuchen, sondern eine Vielzahl an Verbrauchern, wobei z. T. auch nicht nach der Art der Energieabnahme unterschieden wird. Inwieweit die Ansätze, die einzelne Haushaltsprofile prognostizieren, Rückschlüsse auf allgemeingültige Aussagen über die Qualität der angewendeten Methoden zulassen, kann hier nicht beurteilt werden. Des Weiteren sind die im Folgenden erläuterten Algorithmen nicht vollständig in Bezug auf Vorhersagemodelle. Einen weiter gefassten Überblick bieten [Mish08, S. 8ff], [Bock09, S. 14f] oder [Habl04, S. 18f], wobei allerdings immer die zugrundeliegende Fragestellung der jeweiligen Arbeit beachtet werden muss. Eine detaillierte aber auch weniger breit gefächerte Darlegung möglicher Modelle liefert [KBKM12].

Eine einheitliche Einteilung der möglichen Methoden zur Vorhersage der Last konnte aus der Literatur nicht entnommen werden und soll deshalb hier nicht weiter diskutiert werden. Die Aufteilung in dieser Arbeit erfolgt lediglich durch die subjektiv wahrgenommene Komplexität der Algorithmen. Eine Ausnahme, welche weniger komplex ist, ist die Prognose durch ein Standardlastprofil, die zum besseren Verständnis weiterer Themengebiete hier vorgestellt werden soll.

3.1 Standardlastprofile

Bei dem Vergleich eines Standardlastprofils für Berlin aus dem Jahr 2010 mit einem ebenfalls auf den Verbrauch pro Jahr genormten Lastgang eines einzelnen Haushaltes fällt jedoch auf, dass eine Prognose auf Grundlage von einer sehr hohen Anzahl an gemittelten Lastprofilen nicht zielführend ist. In einem Standardlastprofil werden zwar Energien, welche über einen großen

3.2 Regressionsverfahren

Ganz allgemein werden bei der Vorhersage der Lasten x_t oftmals Regressionsverfahren angewendet. Grundlage hierfür sind historische Daten, ohne die die Bestimmung einer Funktion bzw. der Koeffizienten α_n nicht möglich ist. Die Regressionsgleichung hat die folgende allgemeine Form.

$$x_t = \alpha_0 + \alpha_1 y_1 + \alpha_2 y_2 + \cdots + \alpha_n y_n + R \quad (3.1)$$

Die Regressionskoeffizienten können durch unterschiedliche mathematische Verfahren ermittelt werden, worauf hier nicht im Detail eingegangen werden soll. Diese Parameter bestimmen den Verlauf der resultierenden Kurve und hängen von den unterschiedlichen exogenen Einflüssen auf die Last ab. Sie bestimmen die graduelle Gewichtung der Variablen y_n. Da eine exakte Übereinstimmung nie erreicht werden kann, bleibt immer ein Restglied R übrig, das manchmal auch als Fehler bezeichnet wird.

3.3 Neuronale Netze

Neuronal Netze (NN) sind ein viel diskutiertes Thema in sehr vielen Bereichen der Wissenschaft. Der Ursprung dieser Forschung liegt wohl in der Biologie. Allerdings haben sich viele Bereiche der Wissenschaft in der Zwischenzeit das Prinzip dieser neuronalen Netze zu eigen gemacht. Künstliche neuronale Netze (KNN) finden in der Informationstechnologiebranche ihre Anwendungen in Simulationen für die unterschiedlichsten Zwecke. Allen gemein ist jedoch die Analogie zu den biologischen Nervenbahnen, wobei hier auf letzteres nicht eingegangen werden soll, da sich ausreichend Literatur darüber findet (z. B. [KBKM12]).

In der Literatur finden sich darüber hinaus – wie oben bereits erwähnt – sehr viele Ansätze bei denen versucht wird das Training effizienter zu gestalten, in dem man KNN mit anderen Algorithmen kombiniert (z. B. [Mish08]). Es zeigt sich auch, dass der erfolgreiche Einsatz dieser Techniken, unabhängig von der Auflösung der Prognose der elektrischen Last, möglich ist. Wie bei fast allen komplexen Algorithmen sind Untersuchungen im Haushaltsbereich selten.

3.4 Evolutionäre Algorithmen

Das Prinzip der evolutionären Algorithmen (EA) kann auf jedes Problem angewandt werden, solange es eine Lösung für dieses Problem gibt. Allerdings bedeutet dies nicht, dass es eine Garantie auf eine exakte Lösung gibt, wenn die Zeit der Untersuchung begrenzt ist. Das Optimierungsverfahren liefert meist viele Lösungen, die es zu beurteilen gilt. Vor allem auch, weil nie gewiss ist, ob es sich um ein lokales Optimum handelt oder tatsächlich das globale Optimum gefunden

![Abbildung 5: Schematischer Ablauf eines evolutionären Algorithmus (nach [Weic07]).](image)

3.5 Fuzzy-Logik

Die Thematik ist sehr umfassend und wird in [OtJa09] oder in [KBKM12] ausführlich beschrieben.
Um derart vage Werte als Eingang auch verwenden zu können, ist ein umfassendes Wissen von Korrelationen innerhalb der untersuchten Größen notwendig. Darüber hinaus müssen die Funktionen (vgl. Abbildung 6) und Mengen bestimmt und festgelegt werden, was in einem spezifischen Regelwerk endet, das laut [Habl04] nur von Experten umgesetzt werden kann und die Qualität der Lösung beeinflusst.

3.6 Weitere Modelle und abschließende Betrachtung

Abschließend bleibt festzuhalten, dass bei den meisten dieser Verfahren jedoch ein sehr genaues Verständnis der Programmierung und auch der Daten vorausgesetzt wird, wenn nicht ein Großteil der möglichen Resultate ungenutzt bleiben soll, weil eine Interpretation nicht möglich ist.
4 Datengrundlage

4.1 Selektion der Daten

Ein Kriterium zum Ausschluss einer Datenreihe war das Fehlen von mindestens 300 Datensätzen innerhalb des Jahres 2010, was etwa 3 Tagen entspricht, da die Auflösung der Daten 15 Minuten beträgt. Ein weiterer Grund zur Selektion waren unrealistisch hohe oder niedrig erscheinende Verbräuche, die sehr häufig vorkamen und somit viele Datensätze eines EVU komplett unbrauchbar machten. Auch negative Verbräuche kamen in manchen Messreihen vor, die ebenfalls zum Ausschluss des gesamten Profils führten. Aufgrund der anonymisierten Bereitstellung der Daten konnte schlussendlich festgestellt werden, dass nur zwei EVU tatsächlich brauchbare Datensätze lieferten, die den oben aufgeführten Kriterien entsprachen. Dies resultiert in 74 Lastprofilen, über die keine weiteren Informationen vorliegen.

4.2 Merkmale des Datensatzes

Trotz des großen Ausschusses bleiben Messreihen über ein Jahr für 74 Haushalte zur weiteren Verwendung. In Abbildung 7 ist der Jahresstromverbrauch der einzelnen Haushalte abgebildet. Aus allen Profilen ergibt sich ein Mittelwert von 4,68 MWh/a, wobei das Maximum bei 8,63 MWh/a und das Minimum bei 1,35 MWh/a liegt.

![Abbildung 7: Jahresstromverbrauch der einzelnen Haushalte in MWh und der sich daraus ergebende Mittelwert sowie das Minimum und Maximum.](image)

Bei der Betrachtung der Leistung fallen einige Lastgänge durch sehr hohe Werte für einzelne Haushalte auf. Diese sind jedoch nur kurzfristiger Art. Ebenfalls markant ist, dass einige Profile
temporär keinen Stromverbrauch aufweisen (vgl. Abbildung 8). Dies kann entweder daran liegen, dass die geringen Leistungen nicht mehr vom Messgerät erfasst werden konnten, wobei die Toleranzen nicht bekannt sind, oder aber tatsächlich die Stromversorgung ausfiel.

In den Daten befinden sich auch Haushalte, deren Verbrauch direkt mit der Saison bzw. der herrschenden Außentemperatur zusammenhängt. Dies deutet auf Nachtspeicheröfen, Wärmepumpen oder Klimageräte hin, also Geräte, bei denen mit Strom gekühlt bzw. geheizt wird. In Abbildung 9 sind diese Geräte durch den erhöhten Verbrauch, also einer farblichen Unterlegung mit Gelb bis hin zu Rot, in bestimmten Jahreszeiten zu erkennen. Eine Veranschaulichung der Daten findet sich in ausführlicher Form nochmal in [TJJS14]. Dort werden die Daten ebenfalls mit Referenzlastgängen der VDI 4655 verglichen [Vere08].

Abbildung 8: Die minimale und maximale Leistung jedes Profils und der daraus resultierende Mittelwert.

Abbildung 9: Täglicher Strombedarf der einzelnen Haushalte über ein Jahr.

4.3 Relevanz der Daten

Um die statistische Relevanz der Daten nachzuweisen, wurden die Profile auf den jeweiligen Jahresstromverbrauch in MWh normiert, damit sie mit den Daten eines Netzbetreibers vergli-
Datengrundlage

F. Schnorr und H. Hinze

Die Daten wurden verwendet, um die im späteren Verlauf der Arbeit vorgestellten Methoden der Prognose von Lastkurven einzelner Haushalte auszuwerten. Um eine Validierung der Prognosen vornehmen zu können, wird zunächst auf Beurteilung der Qualität von Prognosen einge-
5 Maß für die Qualität von Prognosen

Die Interpretation der Fehler bzw. die Komplexität ihrer Anwendung wird in der Literatur sehr detailliert beschrieben (z. B. [Cron10]). Dieses Kapitel untersucht einige der Fehlermaße und ihre Eignung im Zusammenhang mit den Prognosen. Ein sehr viel umfassendere Übersicht bietet [AnSp00]. Die Aussagekraft wird im Zusammenhang mit dem jeweiligen Fehlermaß diskutiert. Es ist jedoch darauf zu achten, dass die Beurteilung nicht im Zusammenhang mit einem speziellen Kriterium erfolgt, d. h., dass nicht jedes Fehlermaß auch in einem anderen Kontext als ungeeignet angesehen werden kann. Dementsprechend muss bei einer Änderung der Randbedingungen und Parameter auch eine erneute Prüfung der Möglichkeiten die Güte der Prognose zu bestimmen erfolgen.

Fehlermaße lassen sich nach unterschiedlichen Kriterien einordnen, die eine bessere Interpretation und Rückschlüsse auf die Aussagekraft und Eigenschaften ermöglichen. [Höft04, S. 51ff] unterscheidet dazu in der Art der Verlustfunktion. Während eine symmetrische Verlustfunktion auf das Vorzeichen der Abweichung keine Auswirkungen zeigt, kann es bei asymmetrischen Funktionen zum Ausgleich kommen (negative und positive Werte gleicher Größe heben sich auf). Allerdings lassen symmetrische Gütemaße keine Aussage über eine Unter- oder Überschätzung zu, da sie immer mit der Bildung des Betrages oder einer Quadrierung einhergehen.

Darüber hinaus lassen sich viele weitere Möglichkeiten der Differenzierung aufführen. Grund- sätzlich ist eine Einteilung nach der verwendeten Rechenmethode möglich. Daraus folgt eine einfache, quadratische, kumulative, mittlere oder relative Beurteilung der Qualität.

5.1 Nomenklatur

Im weiteren Verlauf des Kapitels wird eine Fehlernomenklatur, wie sie auch in der Literatur zu finden ist, verwendet (z. B. [Cron10]). Diese leitet sich aus den englischen Begriffen ab. Da gerade für das Verständnis der in Kapitel 7 dargestellten Diagramme diese Nomenklatur elementar ist, werden die Abkürzungen, resultierend aus den englischen Begriffen der jeweiligen Rechenoperation, in Tabelle 2 beschrieben.
Tabelle 2: Nomenklatur für Fehler aufgrund der verwendeten Rechenoperation.

<table>
<thead>
<tr>
<th>Kürzel</th>
<th>Englischer Begriff</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>mean</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>E</td>
<td>error</td>
<td>(einfacher) Fehler</td>
</tr>
<tr>
<td>A</td>
<td>absolute</td>
<td>Betrag (mathematisch)</td>
</tr>
<tr>
<td>P</td>
<td>percentage</td>
<td>prozentual</td>
</tr>
<tr>
<td>R</td>
<td>root</td>
<td>Wurzel (mathematisch)</td>
</tr>
<tr>
<td>S</td>
<td>squaring</td>
<td>Quadrierung</td>
</tr>
<tr>
<td>Md</td>
<td>median</td>
<td>Median</td>
</tr>
</tbody>
</table>

5.2 Einfacher Fehler

Der einfache Fehler E_t ergibt sich aus der Differenz zwischen dem Ist-Wert y_t und dem prognostizierten Wert x_t.

\[E_t = x_t - y_t \]

(5.1)

Während durch diese Berechnung Über- und Unterschätzung noch beurteilt werden können, ist dies bei der absoluten Betrachtung des Fehlers AE nicht mehr möglich.

\[AE_t = |E_t| \]

(5.2)

5.3 Mittlerer Fehler

Zwar ist der einfache Fehler leicht zu interpretieren, jedoch nur bei geringen Datenmengen, da sonst eine übersichtliche Darstellung nur noch schwer umgesetzt werden kann. Deshalb bedient man sich oftmals der Mittelung, um den mittleren Fehler ME zu bestimmen.

\[ME_t = \frac{1}{n} \sum_{t=1}^{n} E_t \]

(5.3)

Dabei ist n die Anzahl der Werte die gemittelt werden. Da es sich hierbei um eine asymmetrische Verlustfunktion handelt, wird oftmals der mittlere absolute Fehler MAE bestimmt.

\[MAE_t = \frac{1}{n} \sum_{t=1}^{n} AE_t \]

(5.4)
5.4 Quadratischer Fehler

Während die vorangegangenen Fehlermaße keine Gewichtung in Abhängigkeit der über Gleichung (5.1) gebildeten Differenz vornehmen ändert sich dies durch eine Quadrierung. Die Gewichtung erfolgt aufgrund der Abweichung zwischen den prognostizierten und tatsächlichen Werten, wobei mit steigender Differenz auch die Gewichtung zunimmt. Die bekannteste symmetrische Funktion ist die Wurzel aus dem mittleren quadratischen Fehler RMSE.

\[
RMSE_t = \sqrt{\frac{1}{n} \sum_{t=1}^{n} E_t^2}
\]

(5.5)

Dieses Gütemaß ist zum einen stark abhängig von dem gewählten Zeithorizont und zum anderen von der Gewichtung, auf die kein Einfluss genommen werden kann. Dies macht die Interpretierbarkeit schwer. Da im vorliegenden Fall erhebliche Differenzen nicht zusätzlich gewichtet werden sollen, wird dieses Maß nicht verwendet. Deshalb wird auch auf die Herleitung des relativen RMSE verzichtet.

5.5 Relativer Fehler

Alle in den vorangegangenen Kapiteln vorgestellten Fehlerarten lassen sich auch prozentual bestimmen. Dabei wird das Verhältnis von einer Form des einfachen Fehlers und dem tatsächlichen Wert gebildet.

Die einfachste Berechnung ergibt den prozentualen (einfachen) Fehler.

\[
PE_t = 100 \% \times \frac{E_t}{y_t}
\]

(5.6)

Durch Mittelung ergibt sich daraus der mittlere prozentuale Fehler MPE.

\[
MPE_t = 100 \% \times \frac{1}{n} \sum_{t=1}^{n} \frac{E_t}{y_t}
\]

(5.7)

Ebenfalls lässt sich durch Gl. (5.2) der mittlere absolute prozentuale Fehler MAPE herleiten.

\[
MAPE_t = 100 \% \times \frac{1}{n} \sum_{t=1}^{n} \frac{AE_t}{y_t}
\]

(5.8)

Darüber hinaus kann der Median des absoluten prozentualen Fehlers MdAPE bestimmt werden.

\[
MdAPE_t = 100 \% \times \text{Median} \left(\frac{AE_t}{y_t} \right)
\]

(5.9)

5.6 Weitere Beurteilungsgrößen

Über diese Fehlermaße hinaus werden in der Literatur oftmals noch Formalismen aufgeführt, die eine mehr oder weniger schnelle statistische Einordnung der Prognose bzw. ihrer Qualität zulassen. Dabei wird z. T. der Fehler auf unterschiedliche Eigenschaften hin untersucht, wie bei dem sehr verbreiteten \textit{BIAS}, der Auskunft über eine systematische Unter- bzw. Überschätzung gibt \cite[Höft04, S. 54f]{Höft04}. Da diese Information auch aus anderen Fehlermaßen entnommen werden kann und zudem eine Tendenz hin zur Über- oder Unterschätzung bei der Auswertung nicht betrachtet werden konnte, wird auf die weitere Untersuchung des Fehlermaßes verzichtet. Auch der Theilsche Ungleichheitskoeffizient liefert keine relevanten Informationen, da er die angewendete mit der naiven Prognose vergleicht und letztere den, wie in Kapitel 4 dargelegt, von uns verwendeten Algorithmus ähnelt, womit das Ergebnis weitestgehend um 1 variiert. Die Interpretation wird aufgrund der spärlichen Informationen über die Aussage des Fehlers bei Werten, die größer eins sind, erschwert. Zusätzlich ist durch unterschiedliche Varianten des Fehlers, sowie Diskrepanzen innerhalb der Versionen der Berechnungsvorschriften in der Literatur, ein Vergleich über diese Arbeit hinaus nur bedingt möglich (vgl. \cite[Cron10]{Cron10}, \cite[Höft04]{Höft04}, \cite[Albe09]{Albe09} und \cite[Rado13]{Rado13}). Auf die Darstellung und Diskussion dieses Fehlermaßes soll deshalb verzichtet.
6 Einfache Algorithmen zur Lastprognose

Zwar sind unter den in Kapitel 3 aufgeführten komplexen Algorithmen vielversprechende Ansätze beschrieben, jedoch wurden im Rahmen dieses Projektes dennoch einfachere Varianten bevorzugt. Dies resultierte aus den Anforderungen, die an die Prognosealgorithmen gestellt wurden und nachfolgend aufgelistet sind:

- keine Datenbasis beim Start
- simple Umsetzung
- geringe Anforderung an Rechenleistung
- keine Ausnutzung von Korrelationen (außer Zeit)
 ➔ erstellter Datensatz enthält nur Informationen zu elektrischen Last und Zeit
- mathematisch exakt nachvollziehbar

Aufgrund dieser Kriterien wurden triviale Alternativen zu den in Kapitel 3 vorgestellten Algorithmen ausgearbeitet und untersucht.

6.1 Naive Prognose

Die einfachste Vorhersage ist die naive Prognose. Bei ihr entspricht der aktuell gemessene Wert \(y_{t-1} \) der Prognose \(x_t \). Der gemessene Wert für den gleichen Zeitpunkt der Prognose lautet dann \(y_t \).

\[
x_t = y_{t-1}
\]

Dabei gilt für \(t \) folgende Einschränkung.

\[
\{ t \mid t \in \mathbb{N}^* \}
\]

Dieser Ansatz scheint unter Beachtung der in Kapitel 2.2 gewonnenen Erkenntnisse durchaus machbar. Das Problem ist bei dieser Prognose jedoch, dass nur genau ein Wert vorhergesagt werden kann, was nicht praktikabel ist. Allerdings ist das grundlegende Prinzip einfach auf zeitliche Korrelationen zu übertragen, woraus unterschiedliche Algorithmen resultieren, die im Folgenden vorgestellt werden sollen.

6.2 Nächster-Tag-Prognose (V1)

Eine Erweiterung der naiven Prognose, begründet auf den Zusammenhängen zwischen Zeit und Last, lässt sich aus den gemessenen Daten des letzten Tages entwickeln. Es wird also unterstellt, dass beispielsweise ein Spitzenverbrauch um 12 Uhr sich sehr wahrscheinlich am nächsten Tag wiederholen wird. Da die Daten in einer Auflösung von 15 Minuten vorliegen, enthält der Datensatz für jeden Tag 96 Werte (35040 Werte für ein Jahr), was zu der folgenden formalen Darstellung führt.
Für t gilt, unter der Annahme, dass ein Jahr betrachtet wird, Folgendes:

\[\{ t \mid t \in \mathbb{N} \land 96 < t < 35040 \} \]
(6.4)

Daraus ergibt sich ein Problem bei der Bestimmung der Prognose des ersten Tages, da keine Werte aus dem letzten Jahr vorliegen. Hier wird der letzte Tag der Messreihe eines Jahres, der sonst keine Verwendung bei der Prognose findet, verwendet.

Im weiteren Verlauf dieser Arbeit wird diese Variante der Prognose mit V1 betitelt.

6.3 Nächster-gleicher-Wochentag-Prognose (V2)

\[x_t = y_{t-672} \]
(6.5)
Daraus ergeben sich für t die folgenden Einschränkungen, wobei eine Woche durch 672 Werte repräsentiert wird.

\[\{ t | t \in \mathbb{N} \land 672 < t < 35040 \} \]

(6.6)

Die Problematik aus dem vorangegangen Kapitel wiederholt sich, wobei der Zeitraum in dem dieser Algorithmus nicht verwendet werden kann, auf eine Woche steigt. Dies hat zu Folge, dass am ersten Tag wie auch in Kapitel 6.2 verfahren wird und darauf in der ersten Woche noch V_1 angewendet wird. Diese Herangehensweise für den ersten Tag bzw. die erste Woche des Jahres bleibt für alle weiteren Kapitel gleich und wird deshalb nicht nochmals behandelt.

Das Prinzip ist wieder schematisch in Abbildung 12 dargestellt. Es ist darauf zu achten, dass bei dem gleichen Wochentag sich lediglich die KW verändert.

Abbildung 12: Schematische Darstellung Prognose basierend auf dem gleichen Wochentag.

Im weiteren Verlauf dieser Arbeit wird diese Variante der Prognose mit V_2 betitelt.

6.4 Erweiterte Varianten (V3)

6.4.1 Gemittelte gleiche Wochentage für die Prognose (V3a)

Die vorangegangenen Varianten lassen sich beliebig durch verschiedene Algorithmen erweitern. Die in dieser Arbeit untersuchte dritte Variante V3a basiert auf V_2 wird jedoch erweitert, indem nicht nur ein Wochentag sondern beliebig viele vorangegangene gleiche Wochentage i zur Erstellung der Prognose gemittelt werden. Dies hat zur Folge, dass einmalig auftretende Spitzenverbräuche limitiert werden und gleichzeitig die Energiemenge über einen bestimmten Zeitraum nicht verändert wird.

\[x_t = \frac{1}{n} \sum_{i=1}^{n} y_{t-672+i} \]

(6.7)

Hierbei ist für t weiterhin Folgendes zu beachten.

\[\{ t | t \in \mathbb{N} \land 672 < t < 35040 \} \]

(6.8)
Die Regeln für \(n \) ergeben sich aus der Annahme, dass maximal ein Jahr betrachtet wird und gelten damit auch für \(i \).

\[
\{ n | n \in \mathbb{N} \land 1 \leq n \leq 52 \} \quad (6.9)
\]

Der letzte Tag des Jahres wird dabei vernachlässigt. Ebenfalls wird unterstellt, dass es sich nicht um ein Schaltjahr handelt. Sollte die Anzahl der Wochen geringer als bei der gewählten Option ausfallen, wird über die maximal mögliche Zeitspanne gemittelt.

6.4.2 Gemittelte und gewichtete gleiche Wochentage für Prognose (V3b)

Variante V3a behandelt alle betrachteten Wochentage, die in die Mittelwertbildung einfließen gleich. D. h., dass der Wert, den die Last beispielsweise vor drei Wochen zu einer bestimmten Zeit hatte, gleich gewichtet wird, wie der Wert vor zwei und einer Woche. Die Vermutung, dass die weiter zurückliegenden Werte weniger übereinstimmen, liegt nahe, auch wenn sich darüber keine Aussagen in der Literatur finden. Im späteren Verlauf wird dieser Umstand genauer untersucht. Um die Wochen zu gewichten, wird eine weitere Variable \(k_i \) mit folgenden Eigenschaften eingeführt.

\[
\{ k | k \in \mathbb{R} \land 0 \leq k \leq 1 \} \quad (6.10)
\]

Damit lässt sich Gl. (6.7) erweitern und somit der Algorithmus für V3b herleiten.

\[
x_t = \frac{1}{n} \sum_{i=1}^{n} y_{t-672+i} \ast k_i \quad (6.11)
\]

Die Regeln für alle weiteren Variablen sind den vorangegangenen Abschnitten zu entnehmen (vgl. Gl. (6.8) und (6.9)) und werden hier nicht nochmals aufgeführt.

Abb. 13: Schematische Darstellung des Algorithmus der Prognose basierend auf den gewichteten, gleichen vorgenommenen Wochentagen.
Die erläuterten Varianten zur Vorhersage des Lastgangs sind einfach gehalten, weshalb von Fehlern ausgegangen werden muss. Im Folgenden sollen die Möglichkeiten zur Beurteilung der Qualität von Prognosen behandelt werden.
Untersuchung und Vergleich der Varianten

Trotz der umfangreichen Anzahl an möglichen Qualitätsmaßen fällt ein Vergleich der verschiedenen Versionen schwer, da eine übersichtliche und gleichzeitig aussagekräftige Darstellung aller Datensätze meist sehr viele Einschränkungen mit sich bringt. Im Hinblick auf die zu Untersuchende Güte wird, wie auch bei [TJJS14], die Energie jedes Tages für jedes Profil bestimmt. Die Fehler werden nur anhand dieser Energien ermittelt und auch in den Abbildungen gezeigt.

7.1 Betrachtung V1

Im Zusammenhang mit Abbildung 14 und allen weiteren Diagrammen dieser Art muss vorweg angemerkt werden, dass es durchaus auch relative Fehler gibt, die 60 % bei weitem über- bzw. unterschreiten. Diese treten jedoch vereinzelt auf und ihre Darstellung würde die Zugänglichkeit der Teppichdiagramme negativ beeinträchtigen, weshalb hier und im Folgenden die Skala auf ein Minimum von -60 % und ein Maximum von 60 % limitiert wird.

In Abbildung 15 ist zu sehen, dass bei den meisten Lastgängen die prognostizierte Tagesenergie im Mittel um ca. 25 %, im Vergleich zu den gemessenen Werten, nach unten oder oben hin abweicht. Ebenfalls bereits deutlich ist, dass es zwischen den Profilen erhebliche Abweichungen gibt. Die eingangs festgestellte Problematik bei einzelnen Profilen lässt sich hiermit nochmals

Abbildung 14: Prozentualer einfacher Fehler ermittelt über die Tagesenergie resultierend aus V1.

In Abbildung 15 ist zu sehen, dass bei den meisten Lastgängen die prognostizierte Tagesenergie im Mittel um ca. 25 %, im Vergleich zu den gemessenen Werten, nach unten oder oben hin abweicht. Ebenfalls bereits deutlich ist, dass es zwischen den Profilen erhebliche Abweichungen gibt. Die eingangs festgestellte Problematik bei einzelnen Profilen lässt sich hiermit nochmals
Untersuchung und Vergleich der Varianten F. Schnorr und H. Hinze

untermauern. Es gibt somit Haushalte auf die sich diese Variante mit sehr guten Prognoseergebnissen anwenden lässt und solche, bei denen die Abweichung zwischen Vorhersage und Ist-Wert erheblich ist.

7.2 Betrachtung V2

![Abbildung 15: Gemittelte absolute Abweichung der Tagesenergien jedes Profils ermittelt durch V1.](image)

![Abbildung 16: Prozentualer einfacher Fehler ermittelt über die Tagesenergie resultierend aus V2.](image)

Abb. 17: Gemittelte absolute Abweichung der Tagesenergien jedes Profils ermittelt durch V2.

7.3 Betrachtung V3

Die erweiterte V2 lässt eine große Anzahl an verschiedenen Möglichkeiten zu. Diese alle darzustellen oder nur zu erwähnen, würde den Umfang dieser Arbeit bei weitem überschreiten. Deshalb folgt eine Auswahl an verschiedenen Kombinationen, die durch einige weitere im Anhang ergänzt werden.

7.3.1 V3a

Untersuchung und Vergleich der Varianten

F. Schnorr und H. Hinze

Um die Unter- bzw. Überschätzung auf dem Niveau der V3a zu halten, den Einfluss der Außen- temperatur jedoch zu schmälern, kann eine Gewichtung wie in V3b vorgenommen werden, umso evtl. die Prognose zu verbessern.

Bei der Betrachtung des PE der Tagesenergien, ermittelt durch eine Prognose über gewichtete 3 Wochen, fällt schnell auf, dass sich im Vergleich zur linken Abbildung 18 kaum etwas ändert, wenn eine Gewichtung der ersten Woche mit 60 % und beide darauffolgenden mit 20 % erfolgt (V3b_60/20/20). Deshalb befindet sich die Abbildung im Anhang A.1. Bei der Gegenüberstellung der mittleren Abweichung der Tagesenergien, werden die Auswirkungen deutlicher. Durch die Gewichtung der drei Wochen verändert sich die durchschnittliche Abweichung über alle Profile nur um ca. -0,1 % im Vergleich zur V3a_3W, die im linken Teil der Abbildung 19 zu sehen ist. Bei einer Prognose durch V3b mit einer Gewichtung der ersten Woche mit 60 %, der zweiten mit 30 % und der dritten mit 10 % (V3b_60/30/10) zeigen sich nur marginale negative Veränderungen im Vergleich zur vorangegangenen Gewichtungsmethode. Bei einer Bevorzugung der ersten Woche von 80 % (V3b_80/10/10) ist der Mittelwert des MAPE schlechter als bei V1. Auf einer Darstellung dieser Methoden wird deshalb verzichtet.

Bei einer Erhöhung der Wochenzahl auf 5 und einer Gewichtung von 50 % der ersten, 20 % der zweiten und 10 % der übrigen Wochen verbessert sich die Prognosegüte im Mittel nochmals (V3b_50/20/10/10) im Vergleich zu 3 Wochen. Der Unterschied zu Prognose basierend auf 5 ungewichteten Wochen ist jedoch zu vernachlässigten, wie Abbildung 20 zeigt. Das Teppichdiagramm für die Prognose durch 5 gewichtete Wochen befindet sich in A.2.

Abbildung 19: Links die mittleren Abweichungen von V3a_3W und rechts von V3a_12W für jedes Profil.
Eine Gewichtung ist dementsprechend entweder unwirksam oder verschlechtert aber die Prognose, wenn auch nur geringfügig, so dass eine Anwendung in Zusammenhang mit dem erhöhten Aufwand nicht empfehlenswert ist.

7.4 Standardlastprofil

Das in Kapitel 3.1 vorgestellte Standardlastprofil kann ebenfalls für die Prognose eingesetzt werden. Der in Abbildung 4 abgebildete Standardtag resultiert aus der Mittelung über alle Tageswerte, wobei die Daten für ein komplettes Jahr in 15 minütiger Auflösung vorliegen. Um die Vergleichbarkeit mit den vorangegangenen Kapiteln zu erhalten, wurden mit den normierten Daten die einfachen Fehler berechnet und diese dann wieder auf die einzelnen Jahresverbräuche bezogen.

Abbildung 20: Links die mittleren Abweichungen von V3a_5W und rechts von V3b_50/20/10/10/10 für jedes Profil.

Eine Gewichtung ist dementsprechend entweder unwirksam oder verschlechtert aber die Prognose, wenn auch nur geringfügig, so dass eine Anwendung in Zusammenhang mit dem erhöhten Aufwand nicht empfehlenswert ist.

Deutlich in Abbildung 21 zu sehen ist die in Kapitel 3.1 bereits behandelte Problematik. Für einen einzelnen Haushalt ist ein H0-Profil somit nicht für die Prognose geeignet. Deshalb wird in der abschließenden zusammenfassenden Betrachtung der Varianten und ihrer Güte nicht mehr weiter darauf eingegangen.

7.5 Einfluss der Varianten auf Autarkie und Eigenverbrauch

Um die Auswirkungen der bereits vorgestellten Prognosevarianten untersuchen zu können, wurden für alle Lastprofile der Autarkiegrad und der Eigenverbrauch für V1, V2, V3 mit 3 Wochen und 5 Wochen sowie einer idealen Lastprognose ermittelt. Die PV-Prognose wurde nicht variiert und entspricht der verwendeten und auch vorgestellten Vorhersage aus oben genannter Arbeit.

8 Zusammenfassung und Ausblick

Abschließend sollen die Ergebnisse des vorangegangen Kapitels zusammengefasst werden. Ebenfalls wird auf mögliche weitere Untersuchungen und auch auf Optionen zur Verbesserungen der vorgestellten Prognosearten eingegangen.

8.1 Übersicht über alle Profile

![Gegenüberstellung der Abweichung der Tagesenergie einiger betrachteter Varianten gemittelt über alle Profile](image)

Abbildung 22: Mittlere Abweichung aller Varianten in Abhängigkeit zur Fehlerart.

8.2 Übersicht anhand einzelner Profile

Bereits in Kapitel 3.1 und 5 wurde auf die Problematik der Mittelung eingegangen. Informationen über einzelne Lastprofile und deren Prognosequalität sind aus Abbildung 22 nicht mehr zu entnehmen. Die Erkenntnisse über die allgemeine Qualität der jeweiligen Variante lassen keine
Ableitung auf die Vorhersagegüte einzelner Lastprofile zu. Durch Abbildung 23 wird dies nochmals verdeutlicht. Es geht hervor, dass die Prognose basierend auf 5 Wochen nicht nur prinzipiell überlegen ist, sondern auch, dass die Unterschiede zwischen den Varianten stark vom Lastprofil abhängen. Dabei ist zu beachten, dass es Lastgänge gibt, bei denen eben diese Prognosevariante nur durchschnittlich abschneidet (vgl. Nr. 64 oder 74).

Darüber hinaus gibt es Lastgänge, die sich mit jeder Variante gut prognostizieren lassen (vgl. Nr. 21 oder 23). Bei Letzteren kann angenommen werden, dass der Verbrauch von Tag zu Tag ähnlich ist, der Lastgang also einen Rhythmus besitzt, der für jede der verwendeten Varianten stimmt. Umgekehrt gilt für Profile, bei denen keine Variante akzeptable Ergebnisse liefert, dass sie eine große Varianz und Verteilung der täglichen Energieverbräuche aufweisen.

8.3 Ausblick

Anhang A: Weitere Diagramme zur Analyse der Varianten

Im Folgenden sind die in Kapitel 7 erwähnten Diagramme aufgeführt.

A.1 Prognose durch V3b über 3 Wochen mit Gewichtung

Nachfolgend Diagramme in der Art, wie sie bereits in der Arbeit verwendet wurden um V3b vergleichen zu können. Die Gewichtung der ersten Woche erfolgt mit 60 %, die darauf folgenden beiden Wochen werden jeweils mit 20 % berücksichtigt, womit die gesamte Betrachtungsdauer über 3 Wochen geht.

![Diagramm V3b über 3 Wochen - PE des täglichen Energieverbrauchs, gewichtet](image)

Abbildung 24: Einfacher Fehler bei der Prognose der Last durch V3b_60/20/20 für alle Profile.

![Diagramm Abweichung der Tagesenergie nach V3b für jedes Profil](image)

Abbildung 25: Abweichung der Tagesenergie bei jedem Profil vorhergesagt durch V3b über 3 Wochen mit einer Gewichtung von 60 % der ersten Woche und jeweils 20 % der beiden anderen Wochen.
A.2 Prognose durch V3b über 5 Wochen mit Gewichtung

Nachfolgend Diagramme in der Art wie sie bereits in der Arbeit verwendet wurden um V3b vergleichen zu können. Die Gewichtung der ersten Woche erfolgt mit 50 %, die darauf folgende Woche wird mit 20 % berücksichtigt und die drei restlichen Wochen jeweils mit 10 %.

Abbildung 26: Einfacher Fehler bei der Prognose der Last durch V3b_50/20/10/10/10 für alle Profile.
Literaturverzeichnis

[AmPM11] AMAN, SYAZWANI ; PING, HEW WOOI ; MUBIN, MARIZAN: Modelling and forecasting electricity consumption of Malaysian large steel mills. In: Scientific Research and Essays Bd. 6 (2011), Nr. 8, S. 1817–1830

[BBJP01] BEYER, HANS GEORG ; BRUCHERSEIFER, EVA ; JAKOB, WILFRIED ; POHLHEIM, HARTMUT ; SENDHOFF, BERNHARD ; BINH TO, THANH: Evolutionäre Algorithmen - Begriffe und Definitionen. URL http://ls11-www.cs.uni-dortmund.de/people/beyer/EA-terminologie/term.html. — Evolutionäre Algorithmen - Begriffe und Definitionen. — Version G-1.1

[ErWW08] ERGE, THOMAS ; WILLE-HAUSSMANN, BERNHARD ; WITTWER, CHRISTOF: Realisierung eines „virtuellen“ Kraftwerkprototyps im badenova Stromnetz für die Einsatzplanung von regenerativen Stromgeneratoren und dezentralen KWK- Anlagen – „VIRTPLANT“ (Schlussbericht) : Fraunhofer Institut für Solare Energiesysteme (ISE), 2008

HOFFMAN, PATRICK ; FREY, GÜNTHER ; FRIEDRICH, MALTE ; KERBER-CLASSEN, STEFAN ; MARSHALL, JÖRG ; GEIGER, MANFRED: Praxistest „Moderne Energiesparsysteme im Haushalt“. Saarbrücken : IZES, 2012

HÖFT, CHRISTOPH: Bewertung von Verfahren zur Prognose der elektrischen Last – eine empirische Analyse. Dresden, Technische Universität Dresden, Diplomarbeit, 2004

KOLLER, MICHAEL: Optimierte Betriebsführung eines 1MW Batteriespeichers im Verteilnetz. Zürich, Eidgenössische Technische Hochschule Zürich, Masterthesis, 2012

MCLoughlin, FINTAN ; DUFFY, AIDAN ; CONLON, MICHAEL: Evaluation of time series techniques to characterise domestic electricity demand. In: Energy Bd. 50 (2013), S. 120–130

OTTENS, MANFRED ; JAOUAD, SAMIRA: Einführung in die Regelungstechnik mit Fuzzy-Logik (Skript) (Vorlesungsskript). Berlin : Beuth Hochschule für Technik Berlin, 2009

PETER, STEFAN ; UMWELTBUNDESDAMT (Hrsg.): Modellierung einer vollständig auf erneuerbaren Energien basierenden Stromerzeugung im Jahr 2050 in autarken, dezentralen Strukturen (Nr. 14/2013). München, Dessau-Roßlau : Umweltbundesamt (UBA), 2013. — ISSN 1862-4359

[SuRa08] SUBBARAJ, P.; RAJASEKARAN, V.: Evolutionary Techniques Based Combined Artificial Neural Networks for Peak Load Forecasting. Tamil Nadu : Kalasalingam University, 2008

